240 research outputs found

    Sequence-Based Specification of Embedded Systems

    Get PDF
    Software has become integral to the control mechanism of modern devices. From transportation and medicine to entertainment and recreation, embedded systems integrate fundamentally with time and the physical world to impact our lives; therefore, product dependability and safety are of paramount importance. Model-based design has evolved as an effective way to prototype systems and to analyze system function through simulation. This process mitigates the problems and risks associated with embedding software into consumer and industrial products. However, the most difficult tasks remain: Getting the requirements right and reducing them to precise specifications for development, and providing compelling evidence that the product is fit for its intended use. Sequence-based specification of discrete systems, using well-chosen abstractions, has proven very effective in exposing deficiencies in requirements, and then producing precise specifications for good requirements. The process ensures completeness, consistency, and correctness by tracing each specification decision precisely to the requirements. Likewise, Markov chain based testing has proven effective in providing evidence that systems are fit for field use. Model-based designs integrate discrete and continuous behavior; models have both hybrid and switching properties. In this research, we extend sequence-based specification to explicitly include time, continuous functions, nondeterminism, and internal events for embedded real-time systems. The enumeration is transformed into an enumeration hybrid automaton that acts as the foundation for an executable model-based design and an algebraic hybrid I/O automaton with valuable theoretical properties. Enumeration is a step-wise problem solving technique that complements model-based design by converting ordinary requirements into precise specifications. The goal is a complete, consistent, and traceably correct design with a basis for automated testing

    Detection Of KOI-13.01 Using The Photometric Orbit

    Full text link
    We use the KOI-13 transiting star-planet system as a test case for the recently developed BEER algorithm (Faigler & Mazeh 2011), aimed at identifying non-transiting low-mass companions by detecting the photometric variability induced by the companion along its orbit. Such photometric variability is generated by three mechanisms, including the beaming effect, tidal ellipsoidal distortion, and reflection/heating. We use data from three Kepler quarters, from the first year of the mission, while ignoring measurements within the transit and occultation, and show that the planet's ephemeris is clearly detected. We fit for the amplitude of each of the three effects and use the beaming effect amplitude to estimate the planet's minimum mass, which results in M_p sin i = 9.2 +/- 1.1 M_J (assuming the host star parameters derived by Szabo et al. 2011). Our results show that non-transiting star-planet systems similar to KOI-13.01 can be detected in Kepler data, including a measurement of the orbital ephemeris and the planet's minimum mass. Moreover, we derive a realistic estimate of the amplitudes uncertainties, and use it to show that data obtained during the entire lifetime of the Kepler mission, of 3.5 years, will allow detecting non-transiting close-in low-mass companions orbiting bright stars, down to the few Jupiter mass level. Data from the Kepler Extended Mission, if funded by NASA, will further improve the detection capabilities.Comment: Accepted to AJ on October 4, 2011. Kepler Q5 Long Cadence data will become publicly available on MAST by October 23. Comments welcome (V2: minor changes, to reflect proof corrections

    Validation of Kepler's Multiple Planet Candidates. III: Light Curve Analysis & Announcement of Hundreds of New Multi-planet Systems

    Get PDF
    The Kepler mission has discovered over 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of them in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false-positives indicates that the multiplanet systems contain very few false-positive signals due to other systems not gravitationally bound to the target star (Lissauer, J. J., et al., 2012, ApJ 750, 131). False positives in the multi- planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false-positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ~2 unidentified false-positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves and ground-based spectroscopy and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. None the less, our result nearly doubles the number of verified exoplanets.Comment: 138 pages, 8 Figures, 5 Tables. Accepted for publications in the Astrophysical Journa

    Non-invasive MRI quantification of cerebrospinal fluid dynamics in amyotrophic lateral sclerosis patients.

    Get PDF
    BACKGROUND: Developing novel therapeutic agents to treat amyotrophic lateral sclerosis (ALS) has been difficult due to multifactorial pathophysiologic processes at work. Intrathecal drug administration shows promise due to close proximity of cerebrospinal fluid (CSF) to affected tissues. Development of effective intrathecal pharmaceuticals will rely on accurate models of how drugs are dispersed in the CSF. Therefore, a method to quantify these dynamics and a characterization of differences across disease states is needed. METHODS: Complete intrathecal 3D CSF geometry and CSF flow velocities at six axial locations in the spinal canal were collected by T2-weighted and phase-contrast MRI, respectively. Scans were completed for eight people with ALS and ten healthy controls. Manual segmentation of the spinal subarachnoid space was performed and coupled with an interpolated model of CSF flow within the spinal canal. Geometric and hydrodynamic parameters were then generated at 1 mm slice intervals along the entire spine. Temporal analysis of the waveform spectral content and feature points was also completed. RESULTS: Comparison of ALS and control groups revealed a reduction in CSF flow magnitude and increased flow propagation velocities in the ALS cohort. Other differences in spectral harmonic content and geometric comparisons may support an overall decrease in intrathecal compliance in the ALS group. Notably, there was a high degree of variability between cases, with one ALS patient displaying nearly zero CSF flow along the entire spinal canal. CONCLUSION: While our sample size limits statistical confidence about the differences observed in this study, it was possible to measure and quantify inter-individual and cohort variability in a non-invasive manner. Our study also shows the potential for MRI based measurements of CSF geometry and flow to provide information about the hydrodynamic environment of the spinal subarachnoid space. These dynamics may be studied further to understand the behavior of CSF solute transport in healthy and diseased states

    Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations

    Get PDF
    We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-Domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anti-correlations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing eight planets and one additional planet candidate.Comment: Accepted to MNRA

    Kepler-16: A Transiting Circumbinary Planet

    Get PDF
    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size, and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20% and 69% as massive as the sun, and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5 degree of a single plane, suggesting that the planet formed within a circumbinary disk.Comment: Science, in press; for supplemental material see http://www.sciencemag.org/content/suppl/2011/09/14/333.6049.1602.DC1/1210923.Doyle.SOM.pd

    Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data

    Get PDF
    New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1,091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and those at longer orbital periods (123% for candidates outside of 50-day orbits versus 85% for candidates inside of 50-day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1-- Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the NASA Exoplanet Archiv

    Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets

    Get PDF
    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio

    Substance misuse and community supervision: A systematic review of the literature

    Get PDF
    A narrative systematic review was undertaken of the literature concerning the health of people on probation or parole (community supervision). In this paper, we provide an up-to-date summary of what is known about substance misuse in this context. This includes estimates of the prevalence and complexity of substance misuse in those under community supervision, and studies of the effectiveness of approaches to treating substance misuse and engaging and retaining this population in treatment. A total of 5125 papers were identified in the initial electronic searches, and after careful double-blind review only 31 papers related to this topic met our criteria. In addition, a further 15 background papers were identified which are reported. We conclude that internationally there is a high prevalence and complexity of substance misuse amongst people under community supervision. Despite clear benefits to individuals and the wider society through improved health, and reduced re-offending; it is still difficult to identify the most effective ways of improving health outcomes for this group in relation to substance misuse from the research literature. Further research and investment is needed to support evidence-based commissioning by providing a detailed and up-to-date profile of needs and the most effective ways of addressing them, and sufficient funds to ensure that appropriate treatment is available and its impact can be continually measured. Without this, it will be impossible to truly establish effective referral and treatment pathways providing continuity of care for individuals as they progress through, and exit, the criminal justice pathway
    corecore